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ABSTRACT 

If S is a bounded and closed subset of a Banach space B, which is both 
reflexive and locally uniformly rotund, then, except on a set of first Baire 
category, the points in B have farthest points in S. 

In the note [3] by Edelstein it is shown that, if B is a uniformly rotund Banach 

space and S a bounded and strongly closed subset of B, then the set 

a(S) = {c~B:3s~S  such that l l c - s t l  > I I c - x l l V x ~ S }  

i.e., the set of all points in B that have farthest points in S,  is dense in B. Here 

we will show, by a different method, that the restriction on B can be slightly 
relaxed and at the same time the condition on a(S) strengthened. We will require 
B to be reflexive and locally uniformly rotund (LUR), a condition first intro- 
duced by Lovaglia [4]: 

(LUR) Given e >  0 and x in B, with H x I[ = 1, there exists a 6(e,x) such that 

' - I I  (x + z)/2 II >- '~ 

for all ~ in B such that I1 = II =< 1 and II x - =  II-->=" 
Then a(S) will be shown to contain the intersection of a denumerable family of 

open and dense subsets of B. By the Baire category theorem, the intersection 
is itself dense in B. Such a set will be called a fat subset of B. 

We begin with a lemma on convex functions in arbitrary Banach spaces. 

LEMg_A 1. I f  f is a convex function which satisfies a Lipschitz condition 

f ( x ) - f ( y )  <= c l ] x  - Yl] 

for all x and y in an arbitrary Banach space B, then there exists a fat subset 
E of B such that for each y in E and e > 0 there exist z in B and real numbers 
a, k satisfying 
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f<x) _<_ a + k 11 x - z I1' for all x in B ,  

f ( y )  > a + k II Y - z I[ 2 - ~2/~.  

Proof. Let E n be the set of points y in B such that 

f ( y )  > a + k II y - z 112 - X/nk 

for some triple (z, a, k) in B x R 2 satisfying 

f ( x )  < a + k 11 x - z 112 for all x in B.  

Obviously, E,  is open. If  we can show that each En is dense in B,  then 

o0 

E = [") En 
n = l  

will be fat in B and it will have the required property. To see that all E~ are dense 
take an arbitrary z in B and a k > 0 and put 

a = s u p { f ( x ) -  k l l x -  z l l 2 : x ~ B }  

In view of  the Lipschitz condition on f i t  is clear that, if  k is large, the only points 
in B that influence the supremum above are those near to z .  To be specific, we 

have 

a = sup{f(x)  - k l l x -  z l l 2 : x ~ n  and tlx - zl[ < Ck -~ }. 

Choose first k sufficiently large and then y in B such that I1 Y -  z II -< Ck-1 
and such that 

f ( y )  - k II y - z II 2 + l ink  > a. 

Thus E~ is dense in B and Lemma 1 is proved. 
REMARK. The above lemma is a variant of  the method used in [1]. 
Suppose now that S is an arbitrary bounded subset of B. We then define a 

function r on B with positive values by the formula 

r(x) = sup ~11 x - s  II :s  ~ s )  

Also, we will use the notation 

B(~,  a) --- {y ~ B :  II y - xll--< a )  

for the "ba l l s "  of  B.  

LEMMA 2. The function r is convex and satisfies the Lipschitz condition of  
Lemma 1 with C = 1. Moreover, for all y in B and b > O, 

sup {r(x): x e B(y, b)} = r(y) + b. 

Proof. r is the upper envelope of a family of convex functions, so it is con- 

vex, and it satisfies the Lipschitz condition because each of the members of  the 
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family does so, by the triangle inequality. The last statement of the lemma follows 
from the sup inversion formula: 

s u p { s u p { l [ x - s l l : s ~ S ~  IIx- ell =< b} 
X S 

- -  sup{sup{ l lx -  sl[: Ilx - YII-<- b}: s~S} 
S X 

- -  sup{[~y-s[[ + b:s~S} = r ( y ) +  b. 
S 

We will now go on to investigate the differential properties of a convex function 
f satisfying the conditions of Lemma 1, at the points of E . A  subgradient o f f  
at the point y in B is an element p of B* such that 

f (x)  > f ( y ) +  ( p , x - y )  for all x in B. 

The set of all subgradients o f f  at y is called the subdifferential o f f  at y and 
denoted by a f (y) .  By the Hahn-Banach theorem, Of(y) is a non-empty set for 
each y in B, namely, the continuity o f f  implies that the set {(x,z): f(x)< z} is 
open in B x R and thus by the "geometric" version of the theorem (cf. Bourbaki 
[2], p. 69) separated by a hyperplane from the point (y,f(y)). 

LI~MMA 3. Let f satisfy the conditions of Lemma 1. Then if y is in E, the 
elements of Of(y) all have the same norm in B*. 

COROLLARY. Take f = r  and y in E. Then the elements of t~r(y)all have norm 
one. 

Proof. We may suppose that af(y) contains some elements p ~ 0, and we 
choose._< IIp [1/4. Combining the inequalities, we get 

(1) ( p , x - y ) < e 2 / k + k ( [ l x - z [ 1 2 - l l Y - z l l 2 ) f o r a l l x i n n .  

Take the sup of each side of (1). For a given value of ] i x -  y ] [ ,  we get the most 
out of the right hand side of (1) by putting x - y = 2(y - z) for some 2 _>- 0, 
then 

'~ II p II II Y - z II --- e / k  + k(2~ + z~)II y - ~ II ~. 

Now put 2 = ~/k It y - z  II, the result is 

(2) II p II =< 2k II y - z II + 25. 

If, instead, we take the inf of both sides of (1) and want to get the smallest value 
to the right of (1) for a fixed ]] x - yl[, we put y - x = 2(y - z) and 0 -< 2 -< 1, 
because 

II x - ~ II >= II y - ~ II - II y - ~ II 

with equality in the above case. Thus 
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- ~ Ir p II If y - z l[ s 82/k + k ( - 2 ~  + ~2)11 y - z II ~ 

Again put 2 = 8/k y -  z , this is possible since by (2) and the condition 

5 ~ II p 11/4 we h a v e .  ~ k II y - z [I We get an inequality which combined with 
(2) gives 

(3) [ I ] P ] [ - 2 k ] [ y - z [ I  [ < 28. 

Since e > 0 can be chosen arbitrarily small, this proves Lemma 3. 
To see that the Corollary follows from Lemma 3, we use the estimate of Lemma 

2 instead of  the subgradient relation in (1) and proceed as before, the result is 

(2') 1 _-< 2k H Y - z I[ + 28 

Combined with (3), this shows that l] P 11 ->- 1 whereas C = 1 in the Lipschitz 
condition for r proves the opposite inequality. 

We can now prove the statement announced in the beginning. 

THEOREM. I f  the reflexive Banach space B is (LUR) and S is a bounded 

and closed subset of B ,  then a(S) is fa t  in B.  

Proof. We will in fact prove that the set a(S) contains the earlier constructed 
set E for the function r on B. Suppose, then, that y is in E and take p in ar(y).  
The functional p assumes its minimum (since B is reflexive) on B(y,r(y)) at a 
point x.  We will show that x is in S and hence a farthest point to y in S. With 

no loss of  generality we assume that y = 0 and r (y )=  1, i.e., 1] x ]l = 1. 
Consider now the function r on the segment from 0 to - x .  By the corollary 

to Lemma 3 the increase of r on this segment is exactly one. Hence the ball 
B ( - x ,  2) is the smallest ball with center - x  that contains S,  so we may find 

points z in S very near to the boundary of  this ball, i.e. 

1 - I[ (x + z)/2 II 
can be made arbitrary small. Say that it is made smaller than the quantity 6(e, x) 

in the condition (LUR);  it then follows that l[ x -  z [! < 5  because II z 11 <__1. 
But 5 can be chosen arbitrarily small, hence x is the strong limit of  points z in S, 

so by hypothesis x is in S,  as claimed. 
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