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ABSTRACT

If S is a bounded and closed subset of a Banach space B, which is both
reflexive and locally uniformly rotund, then, except on a set of first Baire
category, the points in B have farthest points in S.

In the note [3] by Edelstein it is shown that, if B is a uniformly rotund Banach
space and S a bounded and strongly closed subset of B, then the set

a(S) = {ceB:3seS such that |c—s| 2| c~x|vxeS}

i.e., the set of all points in B that have farthest points in S, is dense in B. Here
we will show, by a different method, that the restriction on B can be slightly
relaxed and at the same time the condition on a(S) strengthened. We will require
B to be reflexive and locally uniformly rotund (LUR), a condition first intro-
duced by Lovaglia [4]:

(LUR) Given ¢ >0 and x in B, with H X ” =1, there exists a (e, x) such that
1= |(x+2)2]| 26

for all z in B such that |z|| <1 and |x—z| 2e.
Then a(S) will be shown to contain the intersection of a denumerable family of
open and dense subsets of B. By the Baire category theorem, the intersection
1s itself dense in B. Such a set will be called a fat subset of B.

We begin with a lemma on convex functions in atbitrary Banach spaces.

LemMMA 1. If f is a convex function which satisfies a Lipschitz condition

f-fMC|x-y]

for all x and y in an arbitrary Banach space B, then there exists a fat subset
E of B such that for each y in E and & > O there exist z in B and real numbers
a,k satisfying
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fx)sa+k|x—z|? for all x in B,
f>a+k|y—z|*=ek.

Proof. Let E, be the set of points y in B such that
SO >a+k|y—z|*—1/nk

for some triple (z,a,k) in B x R? satisfying

f(x)Sa+k|x—z|?for all xin B.

Obviously, E, is open. If we can show that each E, is dense in B, then

o
E="O1E,,

will be fat in B and it will have the required property. To see that all E, are dense
take an arbitrary z in B and a k > 0 and put

a =sup{f(x)—k|x—-z|*:xeB}

In view of the Lipschitz condition on fit is clear that, if k is large, the only points
in B that influence the supremum above are those near to z. To be specific, we
have

a =sup{f(x) — k”x -z nzzxeB and ”x -~ z“ < Ck1y.

Choose first k sufficiently large and then y in B such that ||y —z| < Ck™
and such that
f(y)—k"y—z||2+ 1/nk>a.

Thus E, is dense in B and Lemma 1 is proved.
REMARK. The above lemma is a variant of the method used in [1].
Suppose now that S is an arbitrary bounded subset of B. We then define a
function r on B with positive values by the formula

r(x) =sup{| x —s| :se S}
Also, we will use the notation
B(x,a)={yeB:|y—x| S a}.
for the “‘balls’’ of B.

LEMMA 2. The function r is convex and satisfies the Lipschitz condition of
Lemma 1 with C = 1. Moreover, for all y in B and b= 0,

sup {r(x):xe B(y,b)} = r(y) + b.

Proof. r is the upper envelope of a family of convex functions, so it is con-
vex, and it satisfies the Lipschitz condition because each of the members of the
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family does so, by the triangle inequality. The last statement of the lemma follows
from the sup inversion formula:

sup {sup {|| x — s||:seS}: | x — y | < b}

sup{sup {|x —s|:|x — y|| £ b}:se5}

sup{fay — s|| + b:seS} = r(y) +b.

We will now go on to investigate the differential properties of a convex function
f satisfying the conditions of Lemma 1, at the points of E.A subgradient of f
at the point y in B is an element p of B* such that

fx) =) +{p,x —y) for all x in B.

The set of all subgradients of f at y is called the subdifferential of f at y and
denoted by ¢f(y). By the Hahn-Banach theorem, df(y) is a non-empty set for
each y in B, namely, the continuity of f implies that the set {(x,z):f(x) < z} is
open in B x R and thus by the ‘‘geometric’’ version of the theorem (cf. Bourbaki
[2], p. 69) separated by a hyperplane from the point (y,f(y)).

LeMMA 3. Let f satisfy the conditions of Lemma 1. Then if y is in E, the
elements of df(y) all have the same norm in B¥*.

CoOROLLARY. Take f=r and y in E. Then the elements of dr(y) all have norm
one.

Proof. We may suppose that df(y) contains some elements p # 0, and we
choose ¢ < | p||/4. Combining the inequalities, we get

) px—yd<elk+k(|x—z|?>—|y—z|? for all xin B.

Take the sup of each side of (1). For a given value of “ x —y|, we get the most
out of the right hand side of (1) by putting x — y = A(y — z) for some 120,
then

A”p” ”y—z” < 82/k+k(21+lz)||y—-z”2.
Now put A=¢/k||y —z|, the result is
2 lp| £2k|y—z| + 2.

If, instead, we take the inf of both sides of (1) and want to get the smallest value
to the right of (1) for a fixed ”x—y”, weput y—x=Ay—z)and 0 <11,
because

[x=zlzly-z]-]y-=x]

with equality in the above case. Thus
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—Alp| |y —z| Sk + k(=24 + 43|y - z|?.

Again put A=gfk|y —z|, this is possible since by (2) and the condition
e ” D || /4 we have ¢ £k “ y—z “ We get an inequality which combined with
(2) gives

® | 1ol =2kl -z | 5 2.

Since ¢ > 0 can be chosen arbitrarily small, this proves Lemma 3.
To see that the Corollary follows from Lemma 3, we use the estimate of Lemma
2 instead of the subgradient relation in (1) and proceed as before, the result is

2" 1<2k|y—z| +2

Combined with (3), this shows that | p|| =1 whereas C=1 in the Lipschitz
condition for r proves the opposite inequality.
We can now prove the statement announced in the beginning.

THEOREM. If the reflexive Banach space B is (LUR) and S is a bounded
and closed subset of B, then a(S) is fat in B.

Proof. We will in fact prove that the set a(S) contains the earlier constructed
set E for the function r on B. Suppose, then, that y is in E and take p in or(y).
The functional p assumes its minimum (since B is reflexive) on B(y,r(y)) at a
point x. We will show that x is in S and hence a farthest point to y in S. With
no loss of generality we assume that y =0 and r(y) =1, ie., x” =1.

Consider now the function r on the segment from 0 to —x. By the corollaty
to Lemma 3 the increase of r on this segment is exactly one. Hence the ball
B(—x,2) is the smallest ball with center —x that contains S, so we may find
points z in S very near to the boundary of this ball, i.e.

1-|(x+2)2|
can be made arbitrary small. Say that it is made smaller than the quantity (g, x)
in the condition (LUR); it then follows that |x —z[| <& because |[z|| <1.
But ¢ can be chosen atbitratily small, hence x is the strong limit of points z in S,
so by hypothesis x is in S, as claimed.
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